Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 522
Filtrar
1.
Front Cell Infect Microbiol ; 14: 1304839, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572319

RESUMO

Background: Chemotherapies for malaria and babesiosis frequently succumb to the emergence of pathogen-related drug-resistance. Host-targeted therapies are thought to be less susceptible to resistance but are seldom considered for treatment of these diseases. Methods: Our overall objective was to systematically assess small molecules for host cell-targeting activity to restrict proliferation of intracellular parasites. We carried out a literature survey to identify small molecules annotated for host factors implicated in Plasmodium falciparum infection. Alongside P. falciparum, we implemented in vitro parasite susceptibility assays also in the zoonotic parasite Plasmodium knowlesi and the veterinary parasite Babesia divergens. We additionally carried out assays to test directly for action on RBCs apart from the parasites. To distinguish specific host-targeting antiparasitic activity from erythrotoxicity, we measured phosphatidylserine exposure and hemolysis stimulated by small molecules in uninfected RBCs. Results: We identified diverse RBC target-annotated inhibitors with Plasmodium-specific, Babesia-specific, and broad-spectrum antiparasitic activity. The anticancer MEK-targeting drug trametinib is shown here to act with submicromolar activity to block proliferation of Plasmodium spp. in RBCs. Some inhibitors exhibit antimalarial activity with transient exposure to RBCs prior to infection with parasites, providing evidence for host-targeting activity distinct from direct inhibition of the parasite. Conclusions: We report here characterization of small molecules for antiproliferative and host cell-targeting activity for malaria and babesiosis parasites. This resource is relevant for assessment of physiological RBC-parasite interactions and may inform drug development and repurposing efforts.


Assuntos
Antimaláricos , Babesia , Babesiose , Malária Falciparum , Malária , Parasitos , Plasmodium , Animais , Humanos , Babesiose/tratamento farmacológico , Malária/parasitologia , Eritrócitos/parasitologia , Antimaláricos/farmacologia , Plasmodium falciparum
2.
ACS Infect Dis ; 10(4): 1405-1413, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38563132

RESUMO

Endochin-like quinolones (ELQs) define a class of small molecule antimicrobials that target the mitochondrial electron transport chain of various human parasites by inhibiting their cytochrome bc1 complexes. The compounds have shown potent activity against a wide range of protozoan parasites, including the intraerythrocytic parasites Plasmodium and Babesia, the agents of human malaria and babesiosis, respectively. First-generation ELQ compounds were previously found to reduce infection by Babesia microti and Babesia duncani in animal models of human babesiosis but achieved a radical cure only in combination with atovaquone and required further optimization to address pharmacological limitations. Here, we report the identification of two second-generation 3-biaryl ELQ compounds, ELQ-596 and ELQ-650, with potent antibabesial activity in vitro and favorable pharmacological properties. In particular, ELQ-598, a prodrug of ELQ-596, demonstrated high efficacy as an orally administered monotherapy at 10 mg/kg. The compound achieved radical cure in both the chronic model of B. microti-induced babesiosis in immunocompromised mice and the lethal infection model induced by B. duncani in immunocompetent mice. Given its high potency, favorable physicochemical properties, and low toxicity profile, ELQ-596 represents a promising drug for the treatment of human babesiosis.


Assuntos
Babesiose , Quinolonas , Camundongos , Humanos , Animais , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Quinolonas/farmacologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico
3.
PLoS Negl Trop Dis ; 18(3): e0012035, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38484010

RESUMO

BACKGROUND: Babesiosis is a worldwide emerging protozoan infection that is associated with a spectrum of disease severity from asymptomatic infection to severe organ damage and death. While effective treatment strategies are available, some immunocompromised patients experience severe acute and prolonged/relapsing illness due in part to an impaired host antibody response. Intravenous immunoglobulin (IVIG) has been used as an adjunctive therapy in some immunocompromised babesiosis patients, but its therapeutic effect is uncertain. We evaluated the presence of Babesia microti antibodies in commercial samples of IVIG. METHODS/PRINCIPLE FINDINGS: The presence of B. microti antibodies in commercial samples of IVIG were tested using an immunofluorescence assay. A subset of samples was then tested for B. microti antibodies using an enzyme linked immunosorbent assay. Out of 57 commercial IVIG samples tested using IFA, and 52 samples tested using ELISA, none were positive for B. microti antibodies. CONCLUSIONS: Commercially available IVIG may not be of therapeutic benefit for babesiosis patients. Additional sampling of IVIG for B. microti antibody and a clinical trial of babesiosis patients given IVIG compared with controls would provide further insight into the use of IVIG for the treatment of babesiosis.


Assuntos
Babesia microti , Babesiose , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Babesiose/tratamento farmacológico , Anticorpos Antiprotozoários , Ensaio de Imunoadsorção Enzimática
4.
Ticks Tick Borne Dis ; 15(3): 102315, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38301344

RESUMO

Canine babesiosis has been increasingly diagnosed in various regions of Germany such as north-eastern Germany in recent years. A dog with several relapses of Babesia canis infection after treatment with imidocarb is described. A 9-year-old male Magyar Viszla with B. canis infection was referred after two treatments with imidocarb (dosage 2.1 mg/kg SC) because of lethargy, fever and pancytopenia (additional treatments with prednisolone and doxycycline). Merozoites were detected in the blood smear and imidocarb treatment was repeated. Clinical signs, pancytopenia and a positive B. canis PCR occurred after the 3rd (6 mg/kg SC), 4th (7.7 mg/kg SC) and 5th (7.5 mg/kg SC and doxycycline for 4 weeks in addition) imidocarb injection and thorough tick prevention with isoxazoline and permethrin products. 12 days after the 5th injection, the PCR was negative for the first time. The dog was again presented with fever 35 days after the 5th injection. The B. canis PCR was positive and laboratory examination revealed pancytopenia. Treatment with atovaquone/azithromycin for 18 days was performed and no further relapse occurred for 32 weeks. In the case of suspected imidocarb resistance in B. canis infection, treatment with atovaquone/azithromycin can be an alternative.


Assuntos
Antiprotozoários , Babesia , Babesiose , Doenças do Cão , Pancitopenia , Masculino , Cães , Animais , Imidocarbo/uso terapêutico , Antiprotozoários/uso terapêutico , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Doxiciclina/uso terapêutico , Azitromicina/uso terapêutico , Pancitopenia/tratamento farmacológico , Babesiose/tratamento farmacológico , Babesiose/epidemiologia , Babesiose/diagnóstico , Alemanha/epidemiologia , Falha de Tratamento , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Doenças do Cão/diagnóstico
5.
Proc Natl Acad Sci U S A ; 121(9): e2312987121, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38377214

RESUMO

Babesiosis is an emerging zoonosis and widely distributed veterinary infection caused by 100+ species of Babesia parasites. The diversity of Babesia parasites and the lack of specific drugs necessitate the discovery of broadly effective antibabesials. Here, we describe a comparative chemogenomics (CCG) pipeline for the identification of conserved targets. CCG relies on parallel in vitro evolution of resistance in independent populations of Babesia spp. (B. bovis and B. divergens). We identified a potent antibabesial, MMV019266, from the Malaria Box, and selected for resistance in two species of Babesia. After sequencing of multiple independently derived lines in the two species, we identified mutations in a membrane-bound metallodependent phosphatase (phoD). In both species, the mutations were found in the phoD-like phosphatase domain. Using reverse genetics, we validated that mutations in bdphoD confer resistance to MMV019266 in B. divergens. We have also demonstrated that BdPhoD localizes to the endomembrane system and partially with the apicoplast. Finally, conditional knockdown and constitutive overexpression of BdPhoD alter the sensitivity to MMV019266 in the parasite. Overexpression of BdPhoD results in increased sensitivity to the compound, while knockdown increases resistance, suggesting BdPhoD is a pro-susceptibility factor. Together, we have generated a robust pipeline for identification of resistance loci and identified BdPhoD as a resistance mechanism in Babesia species.


Assuntos
Anti-Infecciosos , Babesia , Babesiose , Humanos , Babesia/genética , Fosfatase Alcalina , Antiparasitários/farmacologia , Antiparasitários/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Genômica , Anti-Infecciosos/farmacologia
6.
Vet Parasitol ; 324: 110055, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37931475

RESUMO

BACKGROUND: Babesiosis is an infectious disease caused by protozoa of the apicomplexan phylum, genus Babesia. It is a malaria-like parasitic disease that can be transmitted via tick bites. The apicomplexan phylum of eukaryotic microbial parasites has had detrimental impacts on human and veterinary medicine. There are only a few drugs currently available to treat this disease; however, parasitic strains that are resistant to these commercial drugs are increasing in numbers. Plasmodium and Babesia are closely related as they share similar biological features including mechanisms for host cell invasion and metabolism. Therefore, antimalarial drugs may be useful in the treatment of Babesia infections. In addition to antimalarials, iron chelators also inhibit parasite growth. In this study, we aimed to evaluate the in vitro inhibitory efficacy of iron chelator and different antimalarials in the treatment of Babesia bovis. METHODS: Cytotoxicity of antimalarial drugs; pyrimethamine, artefenomel, chloroquine, primaquine, dihydroarthemisinine, and the iron chelator, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1), were evaluated against Madin Darby Bovine Kidney (MDBK) cells and compared to diminazene aceturate, which is the currently available drug for animal babesiosis using an MTT solution. Afterwards, an evaluation of the in vitro growth-inhibitory effects of antimalarial drug concentrations was performed and monitored using a flow cytometer. Half maximal inhibitory concentrations (IC50) of each antimalarial and iron chelator were determined and compared to the antibabesial drug, diminazine aceturate, by interpolation using a curve-fitting technique. Subsequently, the effect of the drug combination was assessed by constructing an isobologram. Values of the sum of fractional inhibitions at 50% inhibition were then estimated. RESULTS: Results indicate that all drugs tested could safely inhibit babesia parasite growth, as high as 2500 µM were non-toxic to mammalian cells. Although no drugs inhibited B. bovis more effectively than diminazine aceturate in this experiment, in vitro growth inhibition results with IC50 values of pyrimethamine 6.25 ± 2.59 µM, artefenomel 2.56 ± 0.67 µM, chloroquine 2.14 ± 0.76 µM, primaquine 22.61 ± 6.72 µM, dihydroarthemisinine 4.65 ± 0.22 µM, 1-(N-acetyl-6-aminohexyl)- 3-hydroxy-2 methylpyridin-4-one (CM1) 9.73 ± 1.90 µM, and diminazine aceturate 0.42 ± 0.01 µM, confirm that all drugs could inhibit B. bovis and could be used as alternative treatments for bovine babesial infection. Furthermore, the efficacy of a combination of the iron chelator, CM1, in combination with artefenomel dihydroarthemisinin or chloroquine, and artefenomel in combination with the iron chelator, CM1, dihydroarthemisinin or chloroquine, exhibited synergism against B. bovis in vitro. CONCLUSION: Our evaluation of the inhibitory efficacy of the iron chelator CM1, antimalarial drugs, and a combination of these drugs against B. bovis could be potentially useful in the development and discovery of a novel drug for the treatment of B. bovis in the future.


Assuntos
Antimaláricos , Babesia , Babesiose , Doenças dos Bovinos , Animais , Bovinos , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Pirimetamina/farmacologia , Primaquina/farmacologia , Primaquina/uso terapêutico , Quelantes de Ferro/farmacologia , Quelantes de Ferro/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Concentração Inibidora 50 , Mamíferos , Doenças dos Bovinos/tratamento farmacológico
7.
Infect Dis Poverty ; 12(1): 67, 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37443058

RESUMO

BACKGROUND: Human babesiosis is a worldwide disease caused by intraerythrocytic protozoa of the genus Babesia. It is transmitted by bites from ixodid ticks, and mechanically transmitted by blood transfusion. It is primarily treated with quinine and/or atovaquone, which are not readily available in China. In this study, we developed a novel treatment regimen involving doxycycline monotherapy in a patient with severe Babesia venatorum infection as an alternative therapeutic medication. The aim of our study is to provide a guidance for clinical practice treatment of human babesiosis. CASE PRESENTATION: A 73-year-old man who had undergone splenectomy and blood transfusion 8 years prior, presented with an unexplained fever, headache, and thrombocytopenia, and was admitted to the Fifth Medical Center of the PLA General Hospital. He was diagnosed with B. venatorum infection by morphological review of thin peripheral blood smears, which was confirmed by multi-gene polymerase chain reaction (PCR), and sequencing of the entire 18s rRNA and partial ß-tubulin encoding genes, as well as isolation by animal inoculation. The doxycycline monotherapy regimen (peros, 0.1 g bisindie) was administered following pharmacological guidance and an effective outcome was observed. The patient recovered rapidly following the doxycycline monotherapy. The protozoan load in peripheral blood samples decreased by 88% in hematocrit counts after 8 days, and negative PCR results were obtained after 90 days of follow-up at the hospital. The treatment lasted for 3 months without any side effects or sequelae. The nine-month follow-up survey of the patient did not reveal any signs of recrudescence or anti-babesial tolerance. CONCLUSIONS: We have reported a clinical case of successful doxycycline monotherapy for human babesiosis caused by B. venatorum, which provides an optional medical intervention for human babesiosis.


Assuntos
Babesia , Babesiose , Ixodidae , Masculino , Animais , Humanos , Idoso , Babesiose/tratamento farmacológico , Doxiciclina/uso terapêutico , Ixodidae/parasitologia , China
8.
Ticks Tick Borne Dis ; 14(4): 102145, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37011497

RESUMO

In the present study, the effect of a combination therapy consisting of diminazene aceturate (DA) and imidocarb dipropionate (ID) on the in vitro growth of several parasitic piroplasmids, and on Babesia microti in BALB/c mice was evaluated using a fluorescence-based SYBR Green I test. We evaluated the structural similarities between the regularly used antibabesial medications, DA and ID, and the recently found antibabesial drugs, pyronaridine tetraphosphate, atovaquone, and clofazimine, using atom pair fingerprints (APfp). The Chou-Talalay approach was used to determine the interactions between the two drugs. A Celltac MEK-6450 computerized hematology analyzer was used to detect hemolytic anemia every 96 hours in mice infected with B. microti and in those treated with either mono- or combination therapy. According to the APfp results, DA and ID have the most structural similarities (MSS). DA and ID had synergistic and additive interactions against the in vitro growth of Babesia bigemina and Babesia bovis, respectively. Low dosages of DA (6.25 mg kg-1) and ID (8.5 mg kg-1) in conjunction with each other inhibited B. microti growth by 16.5 %, 32 %, and 4.5 % more than 25 mg kg-1 DA, 6.25 mg kg-1 DA, and 8.5 mg kg-1 ID monotherapies, respectively. In the blood, kidney, heart, and lung tissues of mice treated with DA/ID, the B. microti small subunit rRNA gene was not detected. The obtained findings suggest that DA/ID could be a promising combination therapy for treating bovine babesiosis. Also, such combination may overcome the potential problems of Babesia resistance and host toxicity induced by utilizing full doses of DA and ID.


Assuntos
Babesia , Babesiose , Theileria , Animais , Camundongos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Imidocarbo/uso terapêutico
9.
Nat Microbiol ; 8(5): 845-859, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055610

RESUMO

Babesiosis is a malaria-like disease in humans and animals that is caused by Babesia species, which are tick-transmitted apicomplexan pathogens. Babesia duncani causes severe to lethal infection in humans, but despite the risk that this parasite poses as an emerging pathogen, little is known about its biology, metabolic requirements or pathogenesis. Unlike other apicomplexan parasites that infect red blood cells, B. duncani can be continuously cultured in vitro in human erythrocytes and can infect mice resulting in fulminant babesiosis and death. We report comprehensive, detailed molecular, genomic, transcriptomic and epigenetic analyses to gain insights into the biology of B. duncani. We completed the assembly, 3D structure and annotation of its nuclear genome, and analysed its transcriptomic and epigenetics profiles during its asexual life cycle stages in human erythrocytes. We used RNA-seq data to produce an atlas of parasite metabolism during its intraerythrocytic life cycle. Characterization of the B. duncani genome, epigenome and transcriptome identified classes of candidate virulence factors, antigens for diagnosis of active infection and several attractive drug targets. Furthermore, metabolic reconstitutions from genome annotation and in vitro efficacy studies identified antifolates, pyrimethamine and WR-99210 as potent inhibitors of B. duncani to establish a pipeline of small molecules that could be developed as effective therapies for the treatment of human babesiosis.


Assuntos
Babesia , Babesiose , Carrapatos , Animais , Humanos , Camundongos , Babesia/genética , Babesiose/tratamento farmacológico , Multiômica , Eritrócitos/parasitologia
10.
J Small Anim Pract ; 64(6): 392-400, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36727469

RESUMO

OBJECTIVES: To report the presence of tick-borne diseases in dogs living in the United Kingdom. MATERIALS AND METHODS: Dogs with a final diagnosis of tick-borne diseases made between January 2005 and August 2019 at seven referral institutions in the United Kingdom were included in the study. RESULTS: Seventy-six dogs were included: 25 were diagnosed with ehrlichiosis, 23 with babesiosis, eight with Lyme borreliosis and six with anaplasmosis. Fourteen dogs had co-infections with two or three pathogens. Except for those dogs with anaplasmosis and Lyme borreliosis, most dogs with tick-borne diseases had a history of travel to or from endemic countries. However, three dogs with ehrlichiosis, and one dog each infected with Babesia canis and Babesia vulpes did not have any history of travel. A variety of non-specific clinical signs and laboratory abnormalities were reported. Targeted treatment was successful at achieving clinical remission in 64 (84%) dogs. CLINICAL SIGNIFICANCE: Even in non-endemic areas, veterinary surgeons should consider tick-borne diseases in dogs with compatible clinical presentation and laboratory findings and especially where there is a history of travel. As autochthonous transmission of tick-borne-pathogens does occur, an absence of travel should not rule out tick-borne diseases. Specific diagnostic testing is required to confirm infection, and this enables prompt targeted treatment and often a positive outcome.


Assuntos
Anaplasmose , Babesia , Babesiose , Doenças do Cão , Ehrlichiose , Doença de Lyme , Doenças Transmitidas por Carrapatos , Cães , Animais , Anaplasmose/diagnóstico , Anaplasmose/tratamento farmacológico , Anaplasmose/epidemiologia , Anaplasma , Doenças Transmitidas por Carrapatos/diagnóstico , Doenças Transmitidas por Carrapatos/tratamento farmacológico , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Babesiose/diagnóstico , Babesiose/tratamento farmacológico , Babesiose/epidemiologia , Ehrlichiose/diagnóstico , Ehrlichiose/tratamento farmacológico , Ehrlichiose/epidemiologia , Ehrlichiose/veterinária , Doença de Lyme/veterinária , Doenças do Cão/diagnóstico , Doenças do Cão/epidemiologia , Protocolos Clínicos
11.
Cells ; 12(3)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36766823

RESUMO

Human babesiosis is an emerging tick-borne disease, caused by haemoprotozoa genus of Babesia. Cases of transfusion-transmitted and naturally acquired Babesia infection have been reported worldwide in recent years and causing a serious public health problem. Babesia duncani is one of the important pathogens of human babesiosis, which seriously endangers human health. The in vitro culture systems of B. duncani have been previously established, and it requires fetal bovine serum (FBS) to support long-term proliferation. However, there are no studies on serum-free in vitro culture of B. duncani. In this study, we reported that B. duncani achieved long-term serum-free culture in VP-SFM AGTTM (VP-SFM) supplemented with AlbuMaxTM I. The effect of adding different dilutions of AlbuMaxTM I to VP-SFM showed that 2 mg/mL AlbuMaxTM I had the best B. duncani growth curve with a maximum percentage of parasitized erythrocytes (PPE) of over 40%, and it can be used for long-term in vitro culture of B. duncani. However, the commonly used 20% serum-supplemented medium only achieves 20% PPE. Clearly, VP-SFM with 2 mg/mL AlbuMaxTM I (VP-SFMA) is more suitable for the in vitro proliferation of B. duncani. VP-SFM supplemented with CD lipid mixture was also tested, and the results showed it could support the parasite growth at 1:100 dilution with the highest PPE of 40%, which is similar to that of 2 mg/mL AlbuMaxTM I. However, the CD lipid mixture was only able to support the in vitro culture of B. duncani for 8 generations, while VP-SFMA could be used for long-term culture. To test the pathogenicity, the VP-SFMA cultured B. duncani was also subjected to hamster infection. Results showed that the hamster developed dyspnea and chills on day 7 with 30% PPE before treatment, which is similar to the symptoms with un-cultured B. duncani. This study develops a unique and reliable basis for further understanding of the physiological mechanisms, growth characteristics, and pathogenesis of babesiosis, and provides good laboratory material for the development of drugs or vaccines for human babesiosis and possibly other parasitic diseases.


Assuntos
Babesia , Babesiose , Animais , Cricetinae , Humanos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Soro , Suplementos Nutricionais , Lipídeos/farmacologia
12.
J Vet Intern Med ; 37(1): 140-149, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36629833

RESUMO

BACKGROUND: Vector-borne diseases are of increasing importance in Germany. Since 2015, autochthonous cases have been increasingly documented in Berlin/Brandenburg. OBJECTIVES: Describe autochthonous Babesia canis infection in the Berlin/Brandenburg region. ANIMALS: Forty-nine dogs with autochthonous B. canis infection. METHODS: Evaluation of history, clinical signs, laboratory abnormalities, treatment, and outcome. RESULTS: Dogs were presented between March and August (9) and September and January (40) in the years 2015-2021. Historical and clinical findings were lethargy (100%), pale mucous membranes (63%), fever (50%), and pigmenturia (52%). Common clinicopathological findings were thrombocytopenia (100%), anemia (85%), intravascular hemolysis (52%), pancytopenia (41%), and systemic inflammatory response syndrome (SIRS; 37%). Babesia detection was based on blood smear evaluation (n = 40) and PCR targeting the 18S rRNA gene of piroplasms (n = 49). Sequencing indicated 99.47% to 100% identity to B. canis sequences from GenBank. All dogs were treated with imidocarb (2.4-6.3 mg/kg; median, 5 mg/kg); 8 dogs received 1, 35 received 2, and 1 dog each received 3, 4, or 5 injections, respectively. Continued PCR-positive results were detected in 7 dogs after the 1st, in 5 after the 2nd, in 2 after the 3rd, and in 1 28 days after the 4th injection. Four dogs were euthanized and 3 dogs died. CONCLUSIONS AND CLINICAL IMPORTANCE: Autochthonous B. canis infections in Berlin/Brandenburg were associated with severe clinicopathological changes, SIRS, and multiorgan involvement. Testing by PCR during and after treatment is advisable to monitor treatment success. Screening of blood donors in high-risk areas and year-round tick protection is strongly recommended.


Assuntos
Babesia , Babesiose , Doenças do Cão , Cães , Animais , Babesia/genética , Doenças do Cão/diagnóstico , Doenças do Cão/tratamento farmacológico , Doenças do Cão/epidemiologia , Babesiose/diagnóstico , Babesiose/tratamento farmacológico , Babesiose/epidemiologia , Imidocarbo/uso terapêutico , Alemanha/epidemiologia
13.
Acta Parasitol ; 68(1): 249-256, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36637693

RESUMO

BACKGROUND AND PURPOSE: The imidazo[1,2-a] pyridines have huge applications in medicinal chemistry with potent activity against wide spectrum of infectious agents. The efficacy of imidazo[1,2-a]pyridine on the in vitro growth of different piroplasms, including Babesia bovis, B. bigemina, B. divergens, B. caballi, and Theileria equi, was investigated in this study. METHODS: The anti-piroplasm efficacy of imidazo[1,2-a] pyridines was assessed using a fluorescence-based SYBR Green I assay. Furthermore, efficacy of imidazo[1,2-a]pyridine against piroplasms following discontinuation of treatment was also assessed using a viability assay. In vitro cultures of B. bovis and T. equi were used to assess the imidazo[1,2-a]pyridine and diminazene aceturate (DA) interaction. RESULTS: In vitro, imidazo[1,2-a]pyridine inhibited the growth of B. bovis, B. bigemina, B. caballi, and T. equi in a dose-dependent manner. The highest inhibitory effects of imidazo[1,2-a]pyridine were detected on the growth of B. caballi with IC50 value of 0.47 ± 0.07. Interestingly, the efficacy of imidazo[1,2-a]pyridine was higher against B. bigemina (IC50: 1.37 ± 0.15) compared to the positive-control DA (IC50: 2.29 ± 0.06). The viability test findings indicate that imidazo[1,2-a]pyridine had a long-lasting inhibitory effect on bovine Babesia parasites in vitro growth up to 4 days after treatment. Notably, when coupled with DA at 0.75 or 0.50 IC50, a high concentration (0.75 IC50) of imidazo[1,2-a]pyridine produced additive suppression of B. bovis growth which suggest that imidazo[1,2-a]pyridine/DA could be a promising combination therapy for the treatment of B. bovis. CONCLUSION: The obtained encouraging findings pave the way for in vitro and in vivo efficacy trials of imidazo[1,2-a]pyridine derivatives against several piroplasmids.


Assuntos
Babesia , Babesiose , Theileria , Theileriose , Animais , Bovinos , Piridinas/farmacologia , Piridinas/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Theileriose/parasitologia
14.
Clin Infect Dis ; 76(4): 741-744, 2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35684960

RESUMO

We describe a case of relapsing babesiosis in an immunocompromised patient. A point mutation in the Babesia microti 23S rRNA gene predicted resistance to azithromycin and clindamycin, whereas an amino acid change in the parasite cytochrome b predicted resistance to atovaquone. Following initiation of tafenoquine, symptoms and parasitemia resolved.


Assuntos
Aminoquinolinas , Babesiose , Humanos , Atovaquona , Babesiose/tratamento farmacológico , Recidiva , Aminoquinolinas/uso terapêutico , Resistência a Medicamentos/genética , RNA Ribossômico 23S/genética
15.
Pathog Glob Health ; 117(3): 315-321, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36172647

RESUMO

The effect of MMV665941 on the growth of Babesia microti (B. microti) in mice, was investigated in this study using a fluorescence-based SYBR Green I test. Using atom Pair signatures, we investigated the structural similarity between MMV665941 and the commonly used antibabesial medicines diminazene aceturate (DA), imidocarb dipropionate (ID), or atovaquone (AV). In vitro cultures of Babesia bovis (B. bovis) and, Theileria equi (T. equi) were utilized to determine the MMV665941 and AV interaction using combination ratios ranged from 0.75 IC50 MMV665941:0.75 IC50 AV to 0.50 IC50 MMV665941:0.50 IC50 AV. The used combinations were prepared depending on the IC50 of each drug against the in vitro growth of the tested parasite. Every 96 h, the hemolytic anemia in the treated mice was monitored using a Celltac MEK-6450 computerized hematology analyzer. A single dose of 5 mg/kg MMV665941 exhibited inhibition in the B. microti growth from day 4 post-inoculation (p.i.) till day 12 p.i. MMV665941 caused 62.10%, 49.88%, and 74.23% inhibitions in parasite growth at days 4, 6 and 8 p.i., respectively. Of note, 5 mg/kg MMV665941 resulted in quick recovery of hemolytic anemia caused by babesiosis. The atom pair fingerprint (APfp) analysis revealed that MMV665941 and atovaquone (AV) showed maximum structural similarity. Of note, high concentrations (0.75 IC50) of MMV665941 and AV caused synergistic inhibition on B. bovis growth. These findings suggest that MMV665941 might be a promising drug for babesiosis treatment, particularly when combined with the commonly used antibabesial drug, AV.


Assuntos
Babesia microti , Babesia , Babesiose , Parasitos , Theileriose , Humanos , Bovinos , Animais , Camundongos , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Babesia/fisiologia , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Roedores , Theileriose/tratamento farmacológico , Theileriose/parasitologia
16.
Front Cell Infect Microbiol ; 12: 1048962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36452305

RESUMO

Human babesiosis is a global emerging tick-borne disease caused by infection with intra-erythrocytic parasites of the genus Babesia. With the rise in human babesiosis cases, the discovery and development of new anti-Babesia drugs are essential. Phosphatidylinositol 4-kinase (PI4K) is a widely present eukaryotic enzyme that phosphorylates lipids to regulate intracellular signaling and trafficking. Previously, we have shown that MMV390048, an inhibitor of PI4K, showed potent inhibition against Babesia species, revealing PI4K as a druggable target for babesiosis. However, twice-administered, 7-day regimens failed to clear Babesia microti parasites from the immunocompromised host. Hence, in this study, we wanted to clarify whether targeting PI4K has the potential for the radical cure of babesiosis. In a B. microti-infected SCID mouse model, a 64-day-consecutive treatment with MMV390048 resulted in the clearance of parasites. Meanwhile, an atovaquone (ATO) resistant parasite line was isolated from the group treated with ATO plus azithromycin. A nonsynonymous variant in the Y272C of the cytochrome b gene was confirmed by sequencing. Likewise, MMV390048 showed potent inhibition against ATO-resistant parasites. These results provide evidence of PI4K as a viable drug target for the radical cure of babesiosis, which will contribute to designing new compounds that can eradicate parasites.


Assuntos
Babesia microti , Babesia , Babesiose , Gastrópodes , Camundongos , Humanos , Animais , Babesia microti/genética , Babesiose/tratamento farmacológico , Camundongos SCID , 1-Fosfatidilinositol 4-Quinase , Babesia/genética , Atovaquona , Hospedeiro Imunocomprometido
17.
Vet Parasitol ; 312: 109823, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306628

RESUMO

The development and rise in drug-resistant Babesia gibsoni strain is a serious concern among veterinary practitioners. Of several therapeutic strategies followed, buparvaquone-azithromycin combination therapy is widely used to treat small Babesia infections in Asia. The present study focused on buparvaquone-induced mutations in B. gibsoni by analyzing its cytochrome b gene sequence. Among the 12 dogs that were administered with buparvaquone-azithromycin combination therapy, 8 of them were unresponsive to drug-resistant B. gibsoni infection. Hematological parameters were recorded before and after 10 day treatment plan and an improvement in these values was observed. Eight samples with persistent parasitemia after 10 day treatment plan was subjected to cytochrome b gene amplification and analyzed for mutations. On analysis, out of the 25 mutations only 9 were non-synonymous in nature; T15N, S48T, P152L, V167I, A217T, F258Y, M311I, S336G, A337S. Mutation P152L was seen near to Q01 (130-148) binding region and F258Y within the drug binding region Q02 (244-266).


Assuntos
Anti-Infecciosos , Babesia , Babesiose , Doenças do Cão , Cães , Animais , Babesia/genética , Citocromos b/genética , Mutação Puntual , Azitromicina/uso terapêutico , Doenças do Cão/tratamento farmacológico , Babesiose/tratamento farmacológico
18.
Parasit Vectors ; 15(1): 329, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36123705

RESUMO

BACKGROUND: An innovative approach has been introduced for identifying and developing novel potent and safe anti-Babesia and anti-Theileria agents for the control of animal piroplasmosis. In the present study, we evaluated the inhibitory effects of Malaria Box (MBox) compounds (n = 8) against the growth of Babesia microti in mice and conducted bioinformatics analysis between the selected hits and the currently used antibabesial drugs, with far-reaching implications for potent combinations. METHODS: A fluorescence assay was used to evaluate the in vivo inhibitory effects of the selected compounds. Bioinformatics analysis was conducted using hierarchical clustering, distance matrix and molecular weight correlation, and PubChem fingerprint. The compounds with in vivo potential efficacy were selected to search for their target in the piroplasm parasites using quantitative PCR (qPCR). RESULTS: Screening the MBox against the in vivo growth of the B. microti parasite enabled the discovery of potent new antipiroplasm drugs, including MMV396693 and MMV665875. Interestingly, statistically significant (P < 0.05) downregulation of cysteine protease mRNA levels was observed in MMV665875-treated Theileria equi in vitro culture in comparison with untreated cultures. MMV396693/clofazimine and MMV665875/atovaquone (AV) showed maximum structural similarity (MSS) with each other. The distance matrix results indicate promising antibabesial efficacy of combination therapies consisting of either MMV665875 and AV or MMV396693 and imidocarb dipropionate (ID). CONCLUSIONS: Inhibitory and hematology assay results suggest that MMV396693 and MMV665875 are potent antipiroplasm monotherapies. The structural similarity results indicate that MMV665875 and MMV396693 have a similar mode of action as AV and ID, respectively. Our findings demonstrated that MBox compounds provide a promising lead for the development of new antibabesial therapeutic alternatives.


Assuntos
Babesia microti , Babesiose , Cisteína Proteases , Malária , Theileria , Animais , Atovaquona/farmacologia , Atovaquona/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Cisteína Proteases/farmacologia , Reposicionamento de Medicamentos , Imidocarbo/análogos & derivados , Camundongos , Theileria/fisiologia
19.
Infect Dis Clin North Am ; 36(3): 655-670, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36116841

RESUMO

Babesiosis is caused by intraerythrocytic parasites that are transmitted primarily by ticks, infrequently through blood transfusion, and rarely through transplacental transmission or organ transplantation. Human babesiosis is found throughout the world, but the incidence is highest in the Northeast and upper Midwestern United States. Babesiosis has clinical features that resemble malaria and can be fatal in immunocompromised and older patients. Diagnosis is confirmed by identification of Babesia parasites on blood smear or Babesia DNA with polymerase chain reaction. Standard treatment consists of atovaquone and azithromycin or clindamycin and quinine for 7 to 10 days.


Assuntos
Babesiose , Atovaquona/uso terapêutico , Azitromicina/uso terapêutico , Babesiose/diagnóstico , Babesiose/tratamento farmacológico , Babesiose/epidemiologia , Clindamicina/uso terapêutico , Humanos , Quinina/uso terapêutico
20.
Antimicrob Agents Chemother ; 66(9): e0057422, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35924942

RESUMO

The present study aimed to evaluate the anti-Babesia effect of MMV390048, a drug that inhibits Plasmodium by targeting the phosphatidylinositol 4-kinase (PI4K). The half inhibitory concentration (IC50) of MMV390048 against the in vitro growth of Babesia gibsoni was 6.9 ± 0.9 µM. In immunocompetent mice, oral treatment with MMV390048 at a concentration of 20 mg/kg effectively inhibited the growth of B. microti (Peabody mjr strain). The peak parasitemia in the control group was 30.5%, whereas the peak parasitemia in the MMV390048-treated group was 3.4%. Meanwhile, MMV390048 also showed inhibition on the growth of B. rodhaini (Australia strain), a highly pathogenic rodent Babesia species. All MMV390048-treated mice survived, whereas the mice in control group died within 10 days postinfection (DPI). The first 7-day administration of MMV390048 in B. microti-infected, severe combined immunodeficiency (SCID) mice delayed the rise of parasitemia by 26 days. Subsequently, a second 7-day administration was given upon recurrence. At 52 DPI, a parasite relapse (in 1 out of 5 mice) and a mutation in the B. microti PI4K L746S, a MMV390048 resistance-related gene, were detected. Although the radical cure of B. microti infection in immunocompromised host SCID mice was not achieved, results from this study showed that MMV390048 has excellent inhibitory effects on Babesia parasites, revealing a new treatment strategy for babesiosis: targeting the B. microti PI4K.


Assuntos
Antimaláricos , Babesia , Babesiose , 1-Fosfatidilinositol 4-Quinase , Aminopiridinas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Camundongos , Camundongos SCID , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Sulfonas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...